Parallel processing of range data merging
نویسندگان
چکیده
This paper describes a volumetric view-merging algorithm that generates a consensus surface of an object from its range images. Our original method merges a set of range images into a volumetric implicit-surface representation, which is converted to a surface mesh by using a variant of the marching-cubes algorithm. We propose a method that increases the computation and memory efficiency for computing signed distances and the method of parallel computing on a PC cluster. Since our method permits a reduction in the data amount allocated in memory, the closest point is searched efficiently; this allows us to increase the number of parallel traversals and to reduce the computation time. In this paper, we describe the following two algorithms which are complementary in terms of the efficiency of CPUs and memory usage: distributed allocation of range data and parallel traversal of partial octrees. By adjusting them according to the system specifications, we can build the model efficiently by a PC cluster. We have implemented this system and evaluated its performance.
منابع مشابه
Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملParleda: a Library for Parallel Processing in Computational Geometry Applications
ParLeda is a software library that provides the basic primitives needed for parallel implementation of computational geometry applications. It can also be used in implementing a parallel application that uses geometric data structures. The parallel model that we use is based on a new heterogeneous parallel model named HBSP, which is based on BSP and is introduced here. ParLeda uses two main lib...
متن کاملEvaluation of scheduling solutions in parallel processing using DEA FDH model
This paper gives a new application of DEA to evaluate the scheduling solutions of parallel processing. It evaluates the scheduling solutions of parallel processing using the non-convex DEA model, FDH model. By introducing each solution of parallel processing scheduling as a DMU with some relevant inputs and outputs this paper shows that how the most efficient schedule(s) can be identified.
متن کاملCloud Computing Technology Algorithms Capabilities in Managing and Processing Big Data in Business Organizations: MapReduce, Hadoop, Parallel Programming
The objective of this study is to verify the importance of the capabilities of cloud computing services in managing and analyzing big data in business organizations because the rapid development in the use of information technology in general and network technology in particular, has led to the trend of many organizations to make their applications available for use via electronic platforms hos...
متن کاملGeometric and Photometric Merging for Large-scale Objects
In this thesis, we consider the geometric and photometric modeling of large-scale and intricately shaped objects, such as cultural heritage objects. When modeling such objects, new issues occurred during the modeling steps which had not been considered in the previous research conducted on the modeling of small, indoor objects. Since the entire data of these objects cannot be obtained by a sing...
متن کامل